Transcytosis as a Mechanism of HIV Entry into Endocervical Tissue: Evaluating Data in Stages

Angela J. Fought
Background:

• During male-to-female transmission, HIV needs to cross the mucosal epithelium of the female reproductive tract
 • To gain access to underlying target cells
• Previously, we illustrated that HIV can penetrate intact columnar and squamous genital epithelia
 • In ex vivo and in vivo systems
 • Carias et al. 2013
 • We were only able to illustrate that virus enters the squamous epithelium in a diffusion-based mechanism
Focus for this study:

ENDOCYTOSIS
Background:

- Utilizing an ex vivo system, we investigated transcytosis as another possible mechanism of HIV penetration
 - Transcytosis, the transfer of molecules through cells

- Utilizing explant tissues:
 - From 11 women
 - We investigated two transcytosis inhibitors
 - To examine if virus entry was impeded compared to controls
Control (A) and the inhibitors (B-C)
Methods:

• Model A (Count of Virions)
 • Evaluated if there are differences in the count of HIV virions for controls compared the tissue treated with the inhibitors

• Model B (Virion Penetration)
 • Compared the proportion of virions penetrating for controls and the two inhibitors

• Model C (Depth of Virions)
 • Compared if there are differences in the depths for controls and the inhibitors

• Notes
 • Analyses performed in SAS 9.4
 • Using a Bonferroni corrected $\alpha=0.0167$ for pairwise tests
Methods Model A (Count):

Model A: Count of Virions

- Negative Binomial (NB)
 - If over dispersion

- Poisson
 - If mean ≈ variance

Check if Zero Inflation (ZI)

- Generalized Estimating Equation (GEE) Model using GENMOD Procedure
 - Only repeated statement

- GEE Model using NLMIXED Procedure
 - Repeated statement and ZI code
Methods Model A (ZI Details):

• Run GENMOD procedure
 • Including ZI
 • Not accounting for repeated measures

• Run NLMIXED procedure
 • Including ZI
 • Not accounting for repeated measures

• Run NLMIXED procedure
 • Including ZI and repeated measures
 • Check if ZI is needed
Methods Model A (ZI Details):

• If ZI is needed
 • Use NLMIXED procedure
 • Including ZI and repeated measures

• If ZI is not needed
 • Use the GENMOD procedure
 • Accounting only for repeated measures
Results Model A (Count):

- NB GEE using GENMOD
- No ZI
- Inhibitor 2 was different than the others (both $p<0.001$), while the control and inhibitor 1 were not
Results Model B (Virion Penetration):

Model B: Virion Penetration
• Binomial GEE model
• Performed using GENMOD

Results:
• The Control group was different from inhibitors 1 and 2 (both $p<0.001$)
• Inhibitors 1 and 2 were not different
Results Model B (Virion Penetration):

Estimated Mean Proportions

- Control: 0.42
- Inhibitor 1: 0.21
- Inhibitor 2: 0.2
Results Model C (Virion Depth):

- Selected the best distribution for depth
 - Gamma GEE model
- Performed using
 GENMOD

Results:
- All three groups are different from each other (all $p<0.01$)
Results Model C (Virion Depth):

Estimated mean depth (bar) overlaid on a scatter plot of the individual depth values.
Conclusions:

• Although the analysis initially sounded simple the process was an educational opportunity in a myriad of ways

• We illustrated that HIV entry into endocervical cells occurs via transcytosis
Additional Research:

• We are investigating particle transport in mucus
 • How it is affected by
 • HIV infected women vs controls
 • Phase of cycle
 • Menopause
 • Bacterial Vaginosis
 • Microbiome
Thanks to the team:

• Thomas J. Hope
• Ann M. Carias
• Meegan R Anderson